Algebraic convergence of Markov chains

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence Rates of Markov Chains

This is an expository paper which presents various ideas related to nonasymptotic rates of convergence for Markov chains. Such rates are of great importance for stochastic algorithms which are widely used in statistics and in computer science. They also have applications to analysis of card shuffling and other areas. In this paper, we attempt to describe various mathematical techniques which ha...

متن کامل

Convergence Rates of Markov Chains

1. Orientation 1 1.1. Example 1: Random-to-Top Card Shuffling 1 1.2. Example 2: The Ehrenfest Urn Model of Diffusion 2 1.3. Example 3: Metropolis-Hastings Algorithm 4 1.4. Reversible Markov Chains 5 1.5. Exercises: Reversiblity, Symmetries and Stationary Distributions 8 2. Coupling 9 2.1. Coupling and Total Variation Distance 9 2.2. Coupling Constructions and Convergence of Markov Chains 10 2.3...

متن کامل

Algebraic Multigrid for Markov Chains

An algebraic multigrid (AMG) method is presented for the calculation of the stationary probability vector of an irreducible Markov chain. The method is based on standard AMG for nonsingular linear systems, but in a multiplicative, adaptive setting. A modified AMG interpolation formula is proposed that produces a nonnegative interpolation operator with unit row sums. We show how the adoption of ...

متن کامل

Convergence Rates for Markov Chains

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...

متن کامل

Convergence for periodic Markov chains

Consider a discrete-time Markov chain (Xn : n > 0) ∼ Markov(λ, P ) with countable state space S. In the last lecture, we proved the following theorem for aperiodic Markov chains. Theorem (Aperiodic case). Assume P is irreducible and positive recurrent with unique invariant measure π. If, in addition, P is aperiodic, then P(Xn = j)→ πj as n→∞ for all j ∈ S. In particular, p (n) ij → πj as n→∞ fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Applied Probability

سال: 2003

ISSN: 1050-5164

DOI: 10.1214/aoap/1050689596